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The mechanism of generation, development and interaction of vortical structures, 
extracted as concentrated-vorticity regions, in homogeneous shear turbulence is 
investigated by the use of the results of a direct numerical simulation of the 
Navier-Stokes equation with 1283 grid points. Among others, a few of typical vortical 
structures are identified as important dynamical elements, namely longitudinal and 
lateral vortex tubes and vortex layers. They interact strongly with each other. 
Longitudinal vortex tubes are generated from a random fluctuating vorticity field 
through stretching of fluid elements caused by the mean linear shear. They are inclined 
toward the streamwise direction by rotational motion due to the mean shear. There is 
a small (about 10") deviation in direction between the longitudinal vortex tubes and 
vorticity vectors therein, which makes the vorticity vectors turn toward the spanwise 
direction (against the mean vorticity) until the spanwise components of the fluctuating 
vorticity become comparable in magnitude with the mean vorticity. These longitudinal 
vortex tubes induce straining flows perpendicular to themselves which generate vortex 
layers with spanwise vorticity in planes spanned by the tubes and the spanwise axis. 
These vortex layers are unstable, and roll up into lateral vortex tubes with concentrated 
spanwise vorticity through the Kelvin-Helmholtz instability. All of these vortical 
structures, through strong mutual interactions, break down into a complicated small- 
scale random vorticity field. Throughout the simulated period an oblique stripe 
structure dominates the whole flow field: initially it is inclined at about 45" to the 
downstream and, as the flow develops, the inclination angle decreases but eventually 
stays at around 10"-20". 

1. Introduction 
Coherent structures, such as tubes and layers of concentrated vorticity, are observed 

to prevail for relatively long times in fully developed turbulence. They are expected to 
play a central role in turbulence dynamics. The transport processes of heat, mass, 
momentum and kinetic energy in turbulent flows seem to be controlled by coherent 
structures. The bursting process in turbulent boundary layers is considered to be 
triggered by hairpin vortices. Understanding their structure and dynamics is 
indispensable for modelling and controlling turbulence. 

In homogeneous isotropic turbulence, tube-like structures of concentrated-vorticity 
regions have been observed numerically by many researchers (Siggia 1981 ; Kerr 1985; 
Hosokawa & Yamamoto 1989; She, Jackson & Orszag 1990; Vincent & Meneguzzi 
1991). In homogeneous shear turbulence, which we deal with in this paper, Rogers & 
Moin (1 987) demonstrated the existence of hairpin vortices. Other coherent structures 
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include the rib structure in free shear turbulence (Jimknez, Cogollos & Bernal 1985; 
Hussain 1986) and streamwise streaks (Kline et al. 1967; Kim & Moin 1986). 

Numerically, concentrated-vorticity regions are visualized by iso-surfaces of high 
vorticity magnitude. It is not easy to discriminate vortex tubes and layers only in terms 
of vorticity magnitude. Recently, a visual recognition diagnostic technique to extract 
vortex tubes and layers was developed by the present authors (Tanaka & Kida 1993). 
Vortex tubes are characterized as regions of large vorticity and small shear, whereas 
vortex layers are regions of large vorticity and comparative large shear. Note here that 
whenever vorticity dynamics is discussed, attention should be paid to the difference in 
definition between iso-surfaces of vorticity magnitude and vorticity surfaces (Kida & 
Takaoka 1994). Also, note that iso-surfaces of vorticity do not always imply a sharp 
discontinuity in vorticity distribution even though it may appear so for a continuously 
distributed vorticity field (94.1). 

We study here the dynamics of vortical structures in homogeneous shear turbulence 
which is realized by solving the Navier-Stokes equation numerically (Kida & Tanaka 
1992). Some of the global behaviour, the statistics and the nature of coherent vortex 
tubes of this flow field have already been reported in Kida & Tanaka (1992). It was 
observed that the amplitude of the fluctuating velocity increases exponentially in time, 
but the development of the flow field seems to be statistically similar (cf. Tavoularis 
1985; Tavoularis & Karnik 1989). Many complicated vortical structures develop and 
interact with each other in a randomly fluctuating background vorticity field. Typical 
vortical structures include longitudinal vortex tubes directed nearly in the streamwise 
direction, lateral vortex tubes along the spanwise direction, and vortex layers with 
spanwise vorticity. The main purpose of this paper is to explore the mechanism of 
generation, development, interaction and breakdown of these vortical structures. The 
configuration of the homogeneous shear flow and the numerical method are briefly 
described in $2. Results of the numerical simulation and an analytical consideration of 
the dynamical development of various vortical structures are presented in 953 and 4. 
Section 5 is devoted to further discussion of the dynamics of vortical structures. 

2. Formulation 
2.1. Homogeneous shear pow 

We consider the motion of an incompressible viscous fluid in a linear mean shear 
(Sx,,O,O) which is along the x,-direction and varies linearly with x, (figure 1). The 
mean vorticity is therefore uniform in space and is directed towards the negative x,- 
axis. Here, the xl-, x,- and x,-axes will be called, for brevity, streamwise, vertical, and 
spanwise directions, respectively. The fluctuating velocity field can be homogeneous in 
such a linear mean shear flow. 

The time-evolution of the fluctuating velocity field u = (ul ,  u2, us) is described by the 
Navier-Stokes equation 

supplemented by the continuity equation 

where p is the pressure and v is the kinematic viscosity. The fluid density is assumed to 
be uniform and be unity. A summation is taken over 1-3 for repeated subscripts. 
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FIGURE 1. Configuration of homogeneously sheared flow. The xl-, x2- and x,-axes are called the 
streamwise, vertical and spanwise directions, respectively: 

By taking the curl of (2.1), we obtain the vorticity equation 

where 

is the fluctuating vorticity, and ciik is the Eddington alternating tensor. 
The first term in the first brackets on the right-hand side of (2.3) represents the 

advection of vorticity by the mean shear which makes the spatial structure of vorticity 
incline toward the streamwise direction without changing the direction of vorticity 
vector. The second term describes the advection of vorticity by the fluctuating velocity. 
The three terms in the second brackets contribute to the tilting and stretching of 
vorticity lines, or to the change of direction and intensity of the vorticity vector. The 
first one describes a conversion of vorticity from the vertical to the streamwise 
components by the mean shear. The second represents either a conversion of vorticity 
from the mean vorticity to the xi-component (i =l 3) or a change in intensity of the 
spanwise vorticity ( i  = 3). Likewise, the third one describes either a conversion of 
vorticity from the x,-component to the xi-component (k + i) or a change in intensity 
of vorticity by stretching or contraction of vorticity linqs (k = i). Finally, the last term 
represents viscous diffusion. 

There are three non-dimensional parameters that characterize this problem. The 
shear rate parameter 

represents the ratio of the characteristic time of the nonlinear interaction of fluctuating 
velocity to that of the mean shear (Lee, Kim & Moin 1990). Here, u' is the r.m.s. of the 
fluctuating velocity, w' is that of the vorticity, and e is the mean energy dissipation rate. 
The Reynolds number 

U ' 2 / €  - 24'2 
R,(t) = - - - 

1 /w' vw' 
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represents the ratio of the characteristic time of the nonlinear interaction to that 
of the viscous effects. The third parameter which characterizes the simulation is 
R ,  = L / ( u ’ ~ / c ) ,  the ratio between the numerical box size L (= 27c, see $2.2) and the 
turbulence lengthscale d 3 / e .  This measures the effect of box size on the numerical flow: 
the larger the value of R,, the smaller the effect. In the simulation discussed in the 
following, R, is initially 3.1, then increases to a maximum of 4.1 at St = 1.84, and then 
decreases to 1.3 at St = 14. Hence, the effect of box size is considered not to be 
significant. 

2.2. Numerical method 
We solve (2.1) and (2.2) numerically under periodic boundary conditions. In order to 
eliminate the explicit appearance of the space coordinate x, in (2.1) we introduce a 
coordinate system x’ that is advected by the mean shear flow as xi = x1 - Stx,, xi = x2, 
xj  = x3 (Rogallo 198 1). The flow field is periodic in this moving coordinate system. The 
numerical simulation is performed in the domain 0 < $xi, xi, xi d 27c. Note that the 
period in the streamwise direction is the double those in the other two directions. 

The velocity field is expanded into a Fourier series as 

u(x’, t )  = C zj(k’, t )  exp [ik’ - x’], 
k‘ 

where k‘ = (k i ,  ki ,  k i )  is the wavenumber, 2k;, ki ,  ki being integers. The summation is 
taken over -+N < 2k;,  k; ,  ki d $N, where N = 128. The Fourier coefficient zj(k’, t )  is 
a complex variable with the property that ii( - k‘, t )  = zj*(k’, t ) ,  where * denotes the 
complex conjugate. 

Because the moving frame is distorted more and more as time progresses, we remesh 
it every 2 time units, i.e. at St = 1,3,5, ..., at which the moving frame is skewed just 
by half (Rogallo 1981). The remeshing is done by using the periodic boundary 
condition in the streamwise direction. After a remeshing, the grid is skewed by the same 
amount in the opposite sense. This new grid continues to be distorted in time and 
another remeshing is necessary. The moving grid happens to be orthogonal at 
St = 0,2,4, . . . . The Fourier modes (lkJ 3 f N -  lkJ)  which may cause aliasing errors at 
remeshing are set to be zero at every time step. This avoids a sudden decrease of energy 
and enstrophy at remeshing. Actually the loss of enstrophy per unit time was a few 
percent of the total. The present numerical scheme is the same as Rogallo’s (1981) 
except for this last point. 

The spectral method is used for calculation of the nonlinear terms in the 
Navier-Stokes equation. The grid spacings are Axl = 2Ax2 = 2Ax, = 4n/N ( z  3.14,  
see below), where 

is a lengthscale at which the mean strain and viscous effects balance. The Runge- 
Kutta-Gill scheme (fourth-order accuracy) is employed for the time integration. 

By expecting that the turbulence dynamics in the developed stage may be insensitive 
to the initial velocity field, we employ here a simple one which is composed of relatively 
large-scale motions. The initial velocity field is given with Fourier coefficients &(k, 0) 
with random phase and with a prescribed energy spectrum of the form 

1, = ( V / S ) 1 ’ 2  (2.8) 

E(k) = ck4 exp [ - 2k2/kt],  (2.9) 

c and k ,  being constants. This spectrum has a peak at a wavenumber k,, i:e. at a length- 
scale $k,, A.x, = k ,  Ax2 = k,) Ax3. Many realizations are simulated with different values 



Vortical structures in a homogeneous shear .flow 47 

of S*(O) and Rh(0) with the initial energy spectrum (2.9). The time evolution of the 
fluctuating velocity field behaves quite differently depending on the values of S*(O) and 
Rh(0) (Kida & Tanaka 1993, and work in preparation; see also Rogers & Moin 1987; 
Lee et al. 1990). For S*(O) larger than some critical value S,* (x 10) the enstrophy 
increases monotonically in time. For smaller values of S*(O) < S:, on the other hand, 
the enstrophy decreases during a substantial period of the simulation though it shows 
some tendency to increase at later times. As the flow develops, Rh(t) seems to increase 
without limit, whereas S*(t) approaches some value around 10 which is close to S:. 

Here, we concentrate our attention on a single realization in which the three 
important terms, i.e. the mean strain, the nonlinear self-interaction and the viscous 
terms, may play comparable roles. We take c = 1.93 x and k,  = 2/50 (z 7) so that 
the initial velocity and vorticity fluctuations are u" = 1.6 and w', = 100, respectively. 
The shear rate S is set to be 10, the viscosity v is 0.01 (therefore S*(O) = 16, R,(O) = 16 
and 1, z 0.03). The ratio of the r.m.s. of vorticity and the shear rate is 1 at the initial 
instant. The intensity of the initial random vorticity is comparable in magnitude with 
the mean shear. To examine the role of the nonlinear interaction in the fluctuating 
velocity field a rapid-distortion calculation, in which the nonlinear terms in the 
fluctuations in (2.3) are discarded, was also performed with the same initial condition. 
We integrated 800 steps with time-increment 0.002 so that the final time simulated is 
1.6 (0 < St < 16). It took 24 s per time step on the FACOM VP2600 at Kyoto 
University. 

3. Characteristics of the flow field 

The time-evolution of the anisotropy tensor of vorticity 
3.1. High-vorticify region 

where ( ) denotes the spatial average, describes a global feature of the development 
of the vorticity field (figure 2). Because the present flow configuration is symmetric 
with respect to the x,-axis, i.e. invariant under a coordinate transformation 
(x,, x,) + (- xl, -x,), two non-diagonal elements, v,, and vZ3. should be zero within 
statistical fluctuations. The anisotropy tensor is zero at the initial instant because the 
initial fluctuating vorticity field is isotropic. The relative magnitude of the three 
diagonal elements, vI1 > u,, > v,,, during the initial stage (S t  5 2) seems to be universal 
for any isotropic initial flow field. This ordering is caused by stretching and rotating 
motions of the mean shear (54.1). 

The non-diagonal element v,, increases much faster than the diagonal elements at the 
early stage of evolution. The positiveness of vl, implies that the fluctuating vorticity is 
inclined toward the streamwise direction in such a way that w1 w,  > 0, which is a direct 
consequence of the fact that the direction of maximal expansion of the linear mean 
shear is inclined at 45" to the downstream. All of this early-time behaviour of the 
anisotropic tensor is predicted by rapid distortion theory (see figure 3 of Kida & 
Tanaka 1992; Lee et al. 1990).? 

t The initial increase of the anisotropy tensor from an isotropic state is explicitly calculated in the 
rapid distortion approximation (Townsend 1970) in which nonlinear self-interaction and viscous 
terms are neglected in (2 .3) .  The result is vI1 z it", uz2 z &t', uQQ = O(t3), uI2 zz i t  for small time t. Note 
that the initial increase of u I 2  is proportional to t ,  which is much faster than the other components. 
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FIGURE 2. Time-evolution of the anisotropy tensor of the vorticity vLi = ( w , o ~ I ) / ( w k w k ) - & l .  

The most prominent feature in the development of the anisotropy tensor at the 
later stage (2 5 St 5 10) is a rapid increase of the spanwise element uS3.  As will be 
discussed in 34.2, the spanwise component of fluctuating vorticity w3 is generated from 
the mean shear through a spanwise vortex stretching, and therefore has the same sign 
as the mean vorticity. The rapid increase of spanwise element uS3 leads to a relative 
decrease of streamwise element uI1, while the vertical element uZ2 does not change very 
much. The non-diagonal element u,, reaches a maximum at St z 2, and then decreases 
gradually to about 0.15. The flow field tends to be isotropic at around St = 12, but later 
it deviates from isotropy again. Current work by the authors with many realizations 
with different values of S*(O) and Rh(0) suggests that there may be a common tendency 
in the relative magnitude of elements of the anisotropy tensor at later times. The above 
behaviour of the anisotropy tensor can be explained by the generation and 
development of various vortical structures (94). 

The spatial structure of the vorticity field is most conveniently visualized from the 
iso-surface of vorticity magnitude. In figure 3, we plot the iso-surface in one half of the 
computed domain (0 d x,, x,, x3 d 27t) at times St = 0, 0.4, 2, 6, 10 and 14. The mean 
flow direction is horizontal and changes linearly in the vertical direction. The 
magnitude of the vorticity on the surfaces is different at different times, but is between 
twice and three times the r.m.s. values. The vorticity field is isotropic at the initial 
instant. At an early time (St  = 0.4) high-vorticity blobs are being stretched in a 
direction inclined at 45” to the downstream. Elongated high-vorticity regions are 
discernible at St = 2. These long thin high-vorticity regions are called longitudinal 
vortex tubes. At later times (e.g. at St = 6) the longitudinal vortex tubes incline more 
toward the streamwise direction, and at the same time there emerge many layer-like 
structures (see figure 4 below). Some of the layers have already appeared by St = 2. 

FIGURE 3. Iso-surfaces of vorticity magnitude. (a)  St = 0, 0 < x l / A x l  < 63, 101 = 2s = 2 ~ ’ ;  (b) 
St = 0.4, 0 < xl/A.xl < 63, 101 = 2.1s = 2 . 1 ~ ’ ;  (c) St = 2, 0 < xl/AXI < 63, 101 = 2.9s = 2.30’; (d )  
St = 6 , 0  < . Y ~ / A ~ Y ~  < 63,101 = 3.84s = 2.301’; (e) St = 10,O < x l / A x I  < 63, 101 = 5.56s = 2 . 6 ~ ’ ;  ( f )  
St = 14, 64 < .X~ /AX,  < 127, 101 = 8.6s == 2 .9~’ .  0 < X2/Axz, xr /Ax i  < 127. 



FIGURE 3. For caption see facing page. 
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FIGURE 4. Iso-surfaces of vorticity magnitude viewed from two different angles a t  St = 8. 
50 < x,/Ax, < 113, 0 < x,/Ax,, xS/Axs d 127, 101 = 4.7s = 2 . 5 ~ ’ .  
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FIGURE 5. Definition of orientation angles DL and /3 of vorticity vector w .  

The vortical structures, both the vortex tubes and layers, break down at later stages 
(St 2 12) at which smaller structures appear and the flow field becomes more isotropic. 

Vortex layers are more clearly seen in a plan view on the horizontal (xl, x,)-plane. 
We draw in figure 4 (a, b) the iso-vorticity surfaces at St = 8 viewed from two different 
angles. Layer-like structures which extend over several tens of mesh sizes in the 
streamwise direction and nearly ten mesh sizes in the spanwise one are clearly observed. 
These layers are wavy but nearly parallel to the spanwise direction. 

3.2. Vorticity directions 

In order to examine the distribution of the direction of the vorticity vectors 
quantitatively we introduce two orientation angles a and p, which are called the 
vertical and horizontal angles respectively, of the direction of a vorticity vector 
(figure 5). We have the following relations: 

o1 = 101 cos a sin p, w2 = IwI sin a, w3 = - IoI cos a cos p. (3.2) 

Remember that the origin (a,  p) = (O", 0") corresponds to the negative x3-axis, i.e. the 
direction of vorticity of the mean shear. 

In figure 6(a), we show the probability density function (PDF) P(a,P) of the 
orientation angles of fluctuating vorticity weighted by IwI at times St = 0.4,2,6, 10 and 
14. Here, P(a, p) cos a Aa A/? is proportional to 101 times the number of grid points on 
which the orientation angles of o lie in domain (a --:Act, a + iAa)  and (P-fAp, /I' + iAp), 
where Aa = A,!3 = 5". The distribution is symmetric with respect to the origin, which 
reflects the invariance of the flow configuration by a rotation of angle 180" around the 
x,-axis. At an earlier time (S t  = 0.4), two peaks appear at (apeak, /Ipeak) = f (45", 90°) 
which are the directions of maximal expansion of the mean shear (Sx,? 0,O) (Rogers & 
Moin 1987). As time goes on, the peaks become sharper, representing longitudinal 
vortices that are being generated. They move toward (a,  p) = (O", k 180"), respectively 
(shown by arrows in the top panel); namely, the fluctuating vorticity tends to incline 
toward streamwise direction while turning to the opposite direction to that of vorticity 
of the mean shear. A mechanism of the change in direction of the vorticity vectors will 
be discussed in $4.1. This movement, however, decelerates at later times and the 
positions of the peaks eventually stay around (apeak, ppeak)  = *(20", 130"). These 
statistically equilibrium angles are probably maintained by some complicated balance 
in the mutual interactions among various vortical structures. 
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FIGURE 6. Probability density functions of orientation angles a and ,b' of (a) the fluctuating vorticity 
and (b )  the total vorticity, weighed by IwI and IwTI, respectively. Contour levels are 1.0, 1.5, 2.5, 
3.5, ... . Arrows in the top panel denote the direction of movement of the peaks. 

One more interesting feature in this figure is that another peak appears around the 
origin after St = 6, which disappears at St = 14. Vorticity vectors corresponding to 
this peak point in the direction of the mean-shear vorticity. As will be discussed in $4.2, 
this peak corresponds to vortex layers generated in around this period. 
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We also examine the total vorticity, which is the sum of the mean shear vorticity and 
fluctuating vorticity, 

where 2, is a unit vector in the spanwise direction. The PDF weighted by lo'l of the 
orientation angle (aT, p') of the total vorticity vector is shown in figure 6(b) (cf. Rogers 
& Moin 1987). At an early time (St = 0.4) longitudinal vortices have not fully 
developed yet and the mean vorticity in the negative x,-direction is dominant, which 
manifests itself as a single peak at the origin. At St = 2, a straight ridge develops along 
a line a' = PT, which is not very steep. 

There are two prominent features in the PDF at later times (St > 6). One is round 
peaks at (a&,,, /I,',,,) = f (30", 90"). These peaks correspond to longitudinal vortex 
tubes. It is interesting that the horizontal peak angle p,',,, is &90", i.e. longitudinal 
vortex tubes, defined in terms of total vorticity, are aligned perpendicularly to the mean 
vorticity. No clear-cut explanation exists, however. In Rogers & Moin (1987) these 
peaks are discussed with relation to the orientation angles of legs of hairpin vortices. 
The other feature is a peak around the origin. This peak is thin in horizontal angle /3 
and wide in vertical angle a. This corresponds to wavy vortex layers, the vorticity in 
which is perpendicular to longitudinal vortex tubes (54.2). 

Non-weighted (i.e. not multiplied by 101) PDFs of angles a and P for fluctuating and 
total vorticity exhibit a similar behaviour to the weighted ones with minor differences 
(figures omitted). The vertical angle a of the peaks of the weighted PDF is closer to 0" 
than that of the unweighted PDF by about 5", at least for t < 12, implying that 
stronger vorticity is more inclined to the streamwise direction. The peak around the 
origin is more emphasized in the weighted PDF than in the unweighted one. In 
particular, the peak level is lower for the fluctuating vorticity in the unweighted PDF. 
This implies that vortex layers are composed of a large spanwise component of 
vortici ty . 

The movement of individual orientation angles a and /3 may give helpful information 
for understanding the dynamics of vortical structures. By taking time derivatives of 
(3.2), we obtain 

oT = o-s i3 ,  (3.3) 

(3.4a) 
Dt 

Da 1 
Dt I d  Dt Dt 

~ = -( 
(3.4b) 

where D/Dt denotes the Lagrangian derivative. Since Do/Dt is known from (2.3), the 
mean values of Da/Dt and Dp/Dt weighted by can be calculated at every (a, /I) in 
the same way as P(a,p). 

The time-derivative field (Da/Dt, Dp/Dt) of the orientation angles at St = 0.4 thus 
obtained is shown by arrows in figure 7(a). The contour line of P(a,p) is drawn for 
reference (cf. figure 6a). There are two sources, at (a,p) = &(45", -9O"), and two 
sinks, at (a, p) = f (45", 90"). The former is the direction of maximal contraction of the 
linear mean shear, while the latter is the direction of maximal expansion. Every 
orientation angle moves toward the direction of the maximal expansion. This is the 
mechanism of the generation of longitudinal vortex tubes (54.1). 

The time-derivative field (DaT/Dt, DP'/Dt) of the orientation angles for the total 
vorticity is calculated similarly. The result at St = 6 is shown in figure 7(b)  together 
with a contour line of the PDF of (a', p') (cf. the third panel of figure 6b). This 
vector field exhibits a peculiar flow pattern. Starting from the origin, it moves to the 
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right and left along a line p' = 0 up to laTl = 40" - 60". Then the flow changes its 
direction toward larger Ip'I until Ip'I z 90". Remember here that the PDF of the 
orientation angles has peaks at p,',,,) = f (30", 90') which roughly represents 
the mean orientation of longitudinal vortex tubes. Around these peaks the flow of the 
orientation angle again changes its direction in such a way that laTl decreases with little 
change of I,!3*I. This flow pattern is commonly observed at other times (S t  > 2). 
Movement of this individual orientation angle from the origin to the peaks may 
represent ' undulation' of vortex layers in the spanwise direction and subsequent 
'wrapping' or 'entrainment' into longitudinal vortex tubes (54.2). The monotonical 
decrease of laT/ after passing the peaks, on the other hand, indicates the perpetual 
leaning of longitudinal vortex tubes toward the streamwise direction (54.1). 

3 . 3 .  Oblique structure 
The primary effect of the linear mean shear (Sx,, 0,O) is to incline the flow structure 
toward the streamwise direction although there are complications because of three- 
dimensional interactions among vortical structures. 

A global feature of the flow structure may be seen in the spatial correlation of 
vorticity. In figure 8(u, b), we draw the two-point correlation functions of the 
transverse component (wf + w;)*l2 - ( ( w f  + w;) l i2)  and the spanwise component w3 in 
the transverse (xl, x,)-plane at St = 0.4, 2, 6, 10 and 14. They take a maximum at the 
origin which is normalized to be unity. The contour levels are 0.8, 0.4, 0.2, 0.1 and 
- 0.1. The positive regions are shaded. The coordinates are measured in terms of the 
grid size so that the unit on the horizontal axis is double that on the vertical one. 

These two correlation functions exhibit globally the same behaviour in the 
development of the oblique structure of the flow field. The direction of the longest 
correlation is initially inclined at 45" to the downstream. They are more and more 
inclined toward the streamwise direction, but eventually the inclination angle seems to 
stay at around some equilibrium value. The correlation function of wg is very thin and 
long, which is characteristic of the structure of vortex layers (54.2). Incidentally, the 
form of the correlation function of the magnitude of vorticity (101 - (lol)) is similar to 
that of the transverse component (figures omitted). 
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FIGURE 8. Time-evolution of two-point correlation functions in the transverse (xl, xz)-pIane of (a) the 
transverse component (0: + w : ) ~ ' ~  - ( ( w :  + O J ~ ) ~ ' ~ )  and (b)  the spanwise component w3.  They take a 
maximum value at the origin which is normalized to be unity. Contour levels are 0.8, 0.4, 0.2, 0.1, 
- 0.1. Positive regions are shaded. 

In order to discuss the oblique structure quantitatively we introduce the angles of 
direction of maximum correlations of the vorticity components. The angles of strong 
correlations for (w: + wi)1/27 w3 and 101 are denoted by O1, 2,  d3, 6,,,, respectively. Their 
time evolutions are plotted in figure 9(a) by filled symbols. They start at 45" and 
decrease monotonically to around 1Oo-2Oo7 which is close to 22", the value observed by 
Rogers & Moin (1987). Since (w4 + w:)l iz is dominant at the initial period and wg at later 
period, the angle Oc, is close to d1, at earlier times but close to 6, at later times. Note 
here that these angles were determined by inspection of the contours of the correlation 
functions and there is ambiguity of about +2". 

As will be discussed in the next section, the orientations of flow structure and the 
vorticity vector should be distinguished in considering the dynamics of vortical 
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FIGURE 9. Time-evolution of various inclination angles : 0, Om,, inclination angle of the principal axis 
of (o io j )  (i, j = 1,2); A, B,,,,, angle of longitudinal vortex tubes to the (xz, x,)-plane; 0,  O,, , ,  
inclination angle of direction of strong correlation of (w: + w;)l/' - ( ( w i  + w~)l'z) ; A, BImI, that of 
(Iwl- (Iwl)); ., O,, that of wg. (a)  Full Navier-Stokes calculation. (b) Rapid distortion calculation. 
Solid curve represents the analytical result of 8 = arctan ( 1 / (  1 + St)) in the rapid distortion 
approximation. 

structures. Strong correlation angles 81,2, 8, and 8,,, may be good indicators of the 
orientation of stripe structure of the flow field. On the other hand, there are two angles 
that may represent the mean direction of vorticity vectors. One is the inclination angle 
8,, of the principal axis of the second-order moment of vorticity ( w i  w i )  (i,j  = 1,2), 
that is O,, = $arctan [2(w, w , ) / ( ( w ~ )  - ( w i ) ) ] .  The other is the angle Opeak of 
longitudinal vortices to the (x2, x,)-plane, that is Bpeak = arctan (cosec /Ipeak tan speak). 
These angles are plotted by open symbols (0 for Om, and a for Opeak)  in figure 9(a). 
It is evident that these angles of the vorticity vectors are much larger than those of flow 
structures. In particular, the inclination angle 8- is remarkably large (around 40"). 
This is because wavy vortex layers ($4.2) yield large values of w2 in addition to the 
deviation of vorticity vectors from the structure (54.1). A similar behaviour of these 
angles was observed in their high-Reynolds-number shear case by Rogers & Moin 
(1987). 

For comparison, we show in figure 9(b) the time evolution of the above angles in 
a rapid distortion calculation. The correlation angles, 01, 2, 03, and O,,,, decrease 
monotonically in time, while the vorticity angles, 8,, and 8peak, increase after a 
transient period (St 5 2). None of these angles seem to approach any equilibrium 
value. This indicates that the linear mean shear is sufficient to make the vortical 
structure incline to the downstream whereas the vorticity vectors deviate in 
the opposite direction. The solid curve represents the analytical expression 
8 = arctan (1 /( 1 + St)) in rapid distortion theory. The almost identical change in time 
of each group of angles suggests that the flow structure in the linear case is quite 
simple. 

For later convenience, we introduce a new coordinate system (xs, x,, x,) along the 
oblique structure of the flow (figure 10). Here, we take el, as the structure angle. We 
call the x,- and x,-axes the structural and normal directions, respectively. 
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FIGURE 10. Structural coordinate system (x8 ,  x,, X J  

4. Dynamics of vortical structures 
4.1. Longitudinal vortex tubes 

As described in the preceding section, longitudinal vortex tubes are born at the initial 
period in directions 45" and 225" to the downstream, and incline, as the flow develops, 
more and more to the mean-stream axis, i.e. the vertical peak angle apeak of fluctuating 
vorticity vector in longitudinal vortex tubes moves toward 0". On the other hand, the 
horizontal peak angle Ppeak moves toward k 180" (against the mean vorticity). The 
angle p,',,, for the total vorticity seems to stay at around k 90" at later times. Here we 
consider a mechanism for this behaviour of the vorticity vectors. 

The decrease of the vertical peak angle speak may be understood more easily with 
reference to the vorticity equation (2.3). The first term in the second brackets of (2.3) 
represents a conversion of the vertical component of vorticity to the streamwise one by 
the mean linear shear. The rate of change in time of this conversion is proportional to 
the vertical component. For an isotropically distributed vorticity field vorticity vectors 
with angles 45" and 225" to the downstream will be stretched most effectively by this 
conversion term. Recall that the first term in the first brackets in (2.3) represents an 
inclination of the flow structure by the linear shear. Therefore, if vorticity vectors are 
aligned along a straight line at some instant of time, they continue to be inclined along 
the direction of the aligned line (figure 11). Only these two terms would make a vortex 
tube incline to the downstream with vorticity aligning along it. 

As the flow develops, a vorticity blob is elongated more and more by the above 
stretching process. Meanwhile, a vortex blob with initially relatively high vorticity 
develops into an elongated thin vortex blob with stronger vorticity. If the net vertical 
component of vorticity inside the blob is positive, then the vorticity vectors tend to 
point up and to the right as shown in figure 12(a-c). On the other hand, if it is negative, 
the vorticity vectors tend to point down-left as shown in figure 12(d-f). An elongated 
vorticity blob with high vorticity (now called a vortex tube) induces a strong swirling 
motion around it. The second term in the second brackets in (2.3), which is also linear 
in fluctuations and represents a conversion of the mean vorticity ( - S )  into the 
direction of the spanwise derivative of the fluctuating velocity aulax,, begins to take 
part in the dynamics. In figure 12(b, c, e , f ) ,  the directions of velocity induced by vortex 
tubes are shown by curved arrows. It is evident that the spanwise derivative of this 
induced velocity is directed as shown with the big open arrows, which turns the 
vorticity vectors as shown with broken arrows in the figures. As a result, it retards the 
leaning toward the streamwise direction of the vorticity vectors compared with that of 
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I X1 

FIGURE 11. Vortical structure (bounded by a curve) and vorticity vectors (denoted by arrows) are 
inclined at the same rate. 

U 

FIGURE 12. Deviation in orientation between a longitudinal vortex tube and the vorticity vectors 
therein. Net vertical vorticity is positive in (a, b, c) ,  while it is negative in (d, eJ’). Time elapses from 
(a)  to ( c )  and from (d)  to (f). Solid and broken straight arrows denote the vorticity vectors, and 
curved arrows show the direction of velocity induced by elongated vortex tubes. Big open arrows 
denote vorticity converted from the mean vorticity. 

the vortex tube itself irrespective of the direction of vorticity vector. Thus, a deviation 
inevitably appears in the direction of the longitudinal vortex tubes and vorticity vectors 
therein. This deviation in turn causes a horizontal turning of the vorticity vectors (see 
below). So far, we have found that both the transverse components, w1 and 02, increase 
in strength, the former being larger than the latter. The spanwise component w3, on the 
other hand, does not show any rapid growth because there is no stretching in this 
direction by the mean shear. Hence, the ordering vll > v,, > oS3 holds at the initial 
stage of evolution (figure 2). 

In order to check whether the above mechanism is actually taking place, we estimate 



Vortical structures in a homogeneous shear f low 59 

St 2 6 14 

(2,. a,) Sw, 0.00 (T 5.35) 0.00 (T  2.96) 0.00 (T 6.35) 
", au,/ax, 0.01 (f0.56) 0.00 (T0.14) 0.01 (k0.67) 

- S )  au,/ax, -0.01 (k3.00) -0.06 (50.60) 0.03 (k0.54) 
vv2w, 0.00 (T 0.33) 0.00 ( 5 0.28) 0.00 (f0.80) 
D%lDt 0.00 (T 2.32) 0.00 (T  2.39) 0.00 (T4.87) 

w, au,/ax, -0.01 (T0.20) 0.05 (T0.17) -0.03 (T0.53) 

TABLE 1. Contribution to Do,/Dt from each term on the right-hand side of (4.1). The averages over 
the whole space and over tube regions (in brackets) are shown. The figures are multiplied by 0.1. Tube 
regions are defined as laT37.5'1 < 12.5", I/3T 105"l < 25" (415 146 points) at St = 2; 
laTT27.5"1 < 12.5", I/3'790"1 < 30" (302601 points) at St = 6;  I~z'j27.5~1 < 12.5", (/3'T90"1 < 30" 
(305096 points) at St = 14. Number of total points is 12S3 (= 2097 152). Inclination angle of fa to 
il is 25", 15" and 20" at St = 2, 6 and 14, respectively. The upper and lower signs refer to the 
longitudinal vortex tubes with downward and upward vorticity, respectively. 

the contribution of each term in (2.3) to the change in time of the normal component 
w, of vorticity by rewriting the equation as 

where 3, is the unit vector in the normal direction. 
To estimate the magnitude of each term for longitudinal vortex tubes, we calculated 

their mean values over those grid points on which the orientation angles (a,/3) or 
(aT,PT) are close to the peak values corresponding to longitudinal vortex tubes. We 
took rectangular regions of laT37.5"I < 12.5", IP+ 105'1 < 25" at St = 2, 
laT T 27.5'1 < 12.5", I /3' f 90'1 < 30" at St = 6, and laT T 27.5'1 < 12.5", 
I PT+ 90'1 < 30" at St = 14. The results are shown in brackets in table 1. The upper and 
lower signs correspond to longitudinal vortex tubes with vorticity directed downstream 
and upstream, respectively. Conversion of vorticity by the mean shear ($,.a,) Sw, is 
always dominant so that the vorticity vectors are inclined more and more toward the 
streamwise direction (figure 7 b). Conversion of vorticity from the spanwise component 
(w, - S) au,/ax, takes large values at early times (St = 2), as expected from the above 
discussion. 

The deviation mechanism described above is due to the direct interaction of the 
fluctuating vorticity and the mean shear. The effects of this interaction are clearly 
observed in a rapid distortion field. As seen in figure 9(b), the vorticity angles are much 
larger than the structural angles. In figure 13(a) we show the high-vorticity regions 
(longitudinal vortex tubes) at St = 4 shadowed and vorticity vectors by lines with 
arrows indicating the direction in the transverse (x,,x,)-plane. It is evident that the 
vorticity vectors (inclined at 40O-42" are much steeper than the vortex tubes (inclined 
at 14"-15") and that the vorticity lines penetrate the iso-surfaces of vorticity. It should 
be remembered here that the vorticity does not change abruptly on these iso-surfaces, 
but rather it is distributed continuously in space. Thus, the penetration of vorticity 
vectors through the iso-surface does not violate the solenoidal condition of vorticity. 

The vorticity distribution in a plane (x,, x,) perpendicular to the structural direction 
which is inclined at 15" to the downstream is shown in figure 13 (b) (plate 1). This is a 
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FIGURE 13. (a) High-vorticity region (shaded) and vorticity vectors (lines with arrows) seen from the 
spanwise direction at St = 4 in a rapid distortion calculation in 6 < x;/Axl < 22, 27 ,< x2/Ax2 < 43, 
39 < x3/Ax3 < 53, where x i  = x1 + (tan 15") x2. (b ,  plate 1) Vorticity field on a plane perpendicular to 
the structure (inclined at 15" to the downstream). Rapid distortion calculation. St = 4. The structural 
component w, is represented by a colour map (-2.5s (blue) d w, < 2 . 5 s  (red)). Red and blue regions 
are rotating in clockwise and counterclockwise directions, respectively. White lines represent the 
perpendicular component (q, wn)  which points upward (downward) in red (blue) regions. 

25 < xa/Ax3 < 54. (c, plate 1)  Same as (6) but for the full Navier-Stokes calculation at St = 4 
continued from a rapid distortion field at St = 3. The perpendicular component of vorticity is inclined 
to the right in both the red and blue regions. There is a strong vortex layer extending horizontally at 
the lower centre. -3 .3s  < w, < 3.1S, - 1.8s < w, < 1.4S, - 4 . 9 s  < wa < 2.8s.  

- 3 . 7 s  < W ,  < 3.4S, - 1 . 7 s  < W ,  < 1.6S, -2.8s < wa < 2.4s .  X; = 14Ax,, 21 < x2/AxZ < 43, 

cross-section of figure 13 (a). The structural component w, is represented by a coiour 
map, with red and blue representing clockwise and counterclockwise rotation, and the 
perpendicular component (w,, w ! )  represented by white lines. Inside of vortex tubes 
the normal component w, is positive (negative) in regions of w, > 0 (0, < 0) though the 
direction is not shown explicitly. The mean flow is into the page. As stated above, 
the vorticity lines penetrate the boundary of the vortex tubes. This behaviour is typical 
and commonly observed in the whole field. 

Next, we consider the change in time of the horizontal angle ppeak.  This is certainly 
caused by the nonlinear mechanism because we confirmed that Ppeak stays at f 90" in 
the rapid distortion calculation. The following is an explanation of the change of Ppeak, 
i.e. a turning of longitudinal vortex tubes against the mean vorticity. 

The spanwise component of (2.3) is written as 

DW, au, au au 
~ = w,s -+ w,  A+ (w, - S )  3+ vvzw,. 
Dt ax, ax, 8x3 

The first two terms on the right-hand side of (4.2) represent respectively conversions 
of (os and (on to the spanwise component by the fluctuating velocity field, whereas the 
third one is a contribution from the spanwise stretching. The magnitude of each of 
these terms may be estimated by taking into account of deviation in direction between 
longitudinal vortex tubes and the vorticity vectors therein. Figure 14 shows a 
longitudinal vortex tube with vorticity directed (a)  downstream and (b) upstream. 
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FIGURE 19. Rolling-up of vortex layers. Spanwise vorticity oj is drawn in the (xl ,x,)-plane. Red and blue denote 
negative and positive values, respectively. St = 8.8,9.2,  9.6, . . ., 12.4. 

KIDA & TANAKA 
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FIGURE 14. The turning toward the positive x,-direction of the vorticity vectors in a longitudinal 
vortex tube with vorticity directed (a) downstream and (b)  upstream. Straight arrows denote vorticity 
vectors, and curved arrows show the direction of velocity induced by the vortex tubes. In both cases 
on &,/axn gives a positive contribution. 

St 2 6 14 

0, a%/axs -0.14 (-0.80, 0.06) -0.05 (-0.33,0.09) 0.01 (-1.66, -0.54) 
o n  auslaxn 0.73 (3.33, -0.48) 1.27 (4.19, 0.57) 1.60 (6.26, -2.34) 
(~,-S)a~,/ax, -0.59 (-0.49, -4.52) -1.22 (-0.19, -3.60) -1.60 (-0.46, -8.04) 
vvzw,  0.00 (- 1.1 1, 2.98) 0.00 (-3.71, 2.70) 0.00 (-4.62, 7.10) 
Do,/Dt 0.00 (0.93, - 1.96) 0.00 (-0.04, - 1.56) 0.01 (-0.50, -3.86) 

TABLE 2. Contribution to DwJDt from each term on the right-hand side of (4.2). The averages over 
the whole space, over tube regions (the first number in brackets) and over layer regions (the second 
number in brackets) are shown. The numbers are multiplied by 0.1. Tube regions are the same as 
those in table 1. Layer regions are defined as la1 < 40°, I PI < 30" (180250 points) at St = 2; laTl < 35", 
IP'I < 30" (771886 points) at St = 6; laTl < 40", IP'I < 30" (517917 points) at St = 14. Inclination 
angle of g8 to 9, is 25", 15" and 20" at St = 2, 6 and 14, respectively. 

(Again recall that vorticity is distributed outside the tubes too.) The straight arrows 
denote the direction of vorticity vectors inside the vortex tube. Vorticity vectors are 
inclined to the downstream less than the vortex tube itself. Curved arrows denote the 
direction of rotation of the vorticity field around the vortex tube. It is seen in these 
figures that w, au,/ax, gives a positive contribution in both cases. This explains the 
turning of the vorticity vectors toward the positive x,-axis (against the mean vorticity). 
Note that this is a result of nonlinear interactions which are neglected in the rapid 
distortion calculation. Incidentally, the same argument may apply to show that the 
vorticity vectors in a vortex tube rotate around the axis of the tube if its vorticity is 

3 F L M  214 
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x3 

FIGURE 15. Correlation function of vorticity components in the direction of B,,,, on the (x3, x,)-plane. 
The value at the origin is normalized to be unity. Contour levels are 0.8,0.4,0.2,0.1, -0.025, -0.05, 
- 0.1. Positive regions are shaded. 

strong enough for the nonlinear interaction to play a role, that is the direction of 
vorticity vectors has a tendency to stay near that of vortex tubes. 

The relative magnitude of each term in (4.2) in longitudinal vortex tubes is estimated 
in our numerical turbulence in the same way as in (4.1). The results are shown as the 
first number in brackets in table 2. It is seen that the contribution from w, au,/ax, is 
actually large at all three time instants. The contribution from the other nonlinear 
terms is quite small. The viscous diffusion works against the increase of w, at the two 
later times. The Lagrangian derivative Dw,/Dt is positive at St = 2, meaning that 
vorticity vectors inside longitudinal vortex tubes are turning toward the positive 
x,-axis. The derivative takes small negative values at St = 6, suggesting that the 
horizontal peak angle / I p e a k  is already in equilibrium by this time. It is not clear to us 
why /I' stays at around f90" at later times (figure 6b).  

In order to substantiate the above scenario of turning of vorticity vectors, we 
integrated the rapid distortion field at St = 3 further using the full Navier-Stokes 
equation. The vorticity field thus obtained at St = 4 is shown in figure 13 (c) (plate 1). 
It is clearly seen that the vorticity vectors inside vortex tubes are turned toward the 
positive x, axis. 
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FIGURE 16. Mechanism for the generation of a vortex layer. If two pairs of longitudinal vortex tubes 
are arranged as in this figure, they stretch vorticity lines to generate a vortex layer in the x,-direction. 
Arrows indicate the direction of velocity induced by the vortex tubes. 

By comparing several realizations with different initial spectra of the velocity field of 
the form (2.9) with various values of c and k,, we found that the mutual distance 
among longitudinal vortex tubes at early times is determined by the lengthscale 
(- 27r/k, x ~ A X , )  of the initial distribution of vorticity. Figure 15 shows the two-point 
correlation function of vorticity components in the direction of l j peak  on a plane normal 
to the structural direction. The correlation length in the spanwise direction is invariant 
in time, staying at around 10 mesh sizes. But the length in the normal direction 
decreases in time to a few mesh sizes. This is caused by distortion due to the linear mean 
shear. The shrinking of the lengthscale in the normal direction enhances stretching by 
longitudinal vortex tubes in the spanwise direction (see figure 17 below). 

As expected from the rather complicated structures of high-vorticity regions shown 
in figure 3, the motion of longitudinal vortex tubes is not so simple. In fact, individual 
vortex tubes are hardly straight but change their shape flabbily. The orientation of the 
tubes inclines more and more on average and approaches the streamwise direction. The 
intensity tends to decrease for the more inclined parts of tubes. But parts of tubes that 
happen to have a larger angle to the streamwise direction get more effective stretching 
to grow into intensified longitudinal vortex tubes. As discussed in $3.2 with reference 
to figure 7(b) ,  vorticity is supplied from vortex layers to longitudinal vortex tubes 
through wrapping or entraining (see also $4.2). The peak orientation angles 
p,',,,) = t(30", 90') of the vorticity vectors seem to be determined by the combined 
effects of many of these complicated dynamical processes. 

4.2. Vortex layers 
In the middle stage of evolution (6 5 St 5 12) layer-like structures are observed in 
the iso-vorticity surfaces (figures 3(d, e) and 4). We consider here a mechanism for 
generation of vortex layers. 

Longitudinal vortex tubes, as discussed in $4.1, induce straining flows perpendicular 
to themselves. These straining flows distort the vorticity field in a somewhat random 
way, which on average stretches fluid elements. Since the spanwise component of 
vorticity of the mean shear dominates the other components, the stretching in the 
spanwise direction may most effectively contribute to magnify vorticity. Indeed a single 
vortex or a pair of vortices can generate shear flows, but an extremely strong shear flow 

3-2 
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o o  
FIGURE 17. Spatial structure of the vorticity and spanwise velocity gradient in an (x2, x,)-plane at 
St = 4. (a ,  plate 1) The spatial distribution of streamwise vorticity w1 is shown with colour map in 
which red and blue regions rotate in clockwise and counterclockwise directions, respectively. The 
perpendicular components of vorticity (w3,  w,) are shown by arrows. Strong spanwise expansion 
regions (c?u,/ax3 > 0.5s) are enclosed by black lines. -3.8s d w1 d 3.7S, -3.0s d o2 < 2.2S, 
-2.2s < w3 < 2.0s. (b) Eight vortices (four pairs of vortices of opposite sign). Arrows on curves 
denote the direction of rotation of the vortices. Straight arrows denote the direction of translation of 
the vortex pairs. xi  = 16Ax,, 23 < x 2 / A x 2  6 5 5 ,  95 < x3 /Ax3  < 127. 

can be generated more effectively by the combined effects of two pairs of vortex tubes 
arranged as shown schematically in figure 16. If they happen to be arranged as shown 
in this figure, a strong vortex layer with a spanwise component of vorticity is generated 
between them. 

In figure 17, we show the structure of vorticity field in an (x2 ,  x,)-plane at St = 4. The 
mesh size of the plane is 32 x 32 (23 d x 2 / A x 2  < 55, 95 d x 3 / A x 3  < 127). The spatial 
distribution of w1 is drawn in figure 17(a) (plate 1) with colour map in which red and 
blue denote clockwise and counterclockwise rotations, respectively. Among others, 
eight vortices (four pairs of vortices of opposite sign) are noticeable as sketched in 
figure 17(b). The left-hand pairs move to the left and the right-hand pairs move to the 
right. The transverse components of vorticity (w3,  02) are shown by arrows. Domains 
enclosed by black lines represent the regions of strong spanwise expansion 
(au,/ax, > 0.5s). These regions of strong spanwise expansion appear behind each pair 
of vortices at which strong spanwise vortex layers in the direction of the mean vorticity 
(pointing to the left) are generated (see the three enclosed regions around the centre). 
It is interesting to recall that the direction of vorticity in vortex layers is opposite to that 
of turning of longitudinal vortex tubes ($3.3). 

A blue region with downward arrows at the middle-left represents a downward 
longitudinal vortex tube which connects with a horizontal vortex layer on the right. 
This is a typical example of the interaction between vortex layers and longitudinal 
vortex tubes, which are observed here and there in the whole flow field. Tracking these 
interactions in a three-dimensional visualization, we observed that vortex layers are 
being either wrapped or entrained into longitudinal vortex tubes. The spanwise 
component of vorticity is transferred to the streamwise component by this process (see 
figure 7b) (cf. Jimenez & Moin 1991). A further investigation is necessary to make this 
mechanism clearer. 

Each term in (4.2) which contributes to the change over time of the spanwise 
vorticity from vortex layers is shown as the second number in brackets in table 2. We 
see that (w3-S)au3/ax3 actually gives a dominant contribution to the increase of 
negative spanwise vorticity at three times, St = 2, 6 and 14. Viscous diffusion works to 
opposite it. 
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x1 
FIGURE 18. Contours of spanwise vorticity w3 on a plane x, = 72Ax3 at St = 9.2. 0 < x,/AxI, 
x,/Ax, < 127. Contour levels are 0, f lSS, 3S, ... . Negative regions are shaded. An oblique 
stripe structure which is inclined at 10"-20" to the downstream is evident. 

In figure 18, we draw contours of the spanwise vorticity on the plane xg = 72 at 
St  = 9.2. The domain is the whole simulated region in the (xl, x,)-plane. The existence 
of an oblique stripe structure inclined by 10"-20" to the downstream is evident ($3.3). 
These elongated thin vortical structures are actually vortex layers. Their length covers 
typically several tens of mesh sizes, their thickness a few mesh sizes, and their width 
nearly ten mesh sizes. 

4.3. Lateral vortex tubes 

Vortex layers, which are described in the preceding section, are rolled up into lateral 
vortex tubes typically by the Kelvin-Helmholtz instability (Ruetsch & Maxey 1992). 
Figure 19 (plate 2) is a time series of the spanwise component of vorticity on the (xl, 
x,)-plane when a thin vortex layer rolls up to make vortex tubes. Colour represents the 
value of the spanwise component of vorticity ; red is for clockwise rotation and blue for 
counterclockwise rotation. A rolling-up process of a vortex layer into three well- 
defined vortex tubes is clearly seen. This is the Kelvin-Helmholtz instability. The thin 
layer shown in figure 19 covers a few meshes widths so that the half-width 6 is estimated 
to be (2n/ 128) x 2 z 0.1. Half of the velocity difference U,, across the layer is about 9. 
Hence, the relevant Reynolds number is Re = U,, 6/v = 90. There are about 12 meshes 
in the x,-direction between adjacent vortex tubes so that the distance h is estimated to 
be (4n/128) x 12 z 1.2. The linear stability of a unidirectional shear flow of tanh-type, 
U = U,, tanhyl6, was investigated by Betchov & Szewczyk (1963). The wavelength h of 
the most rapidly growing mode is about 146 for Re = 90 (see figure 1 of their paper), 
which is comparable with the above numerical values. 

Many strong lateral vortex tubes with high vorticity are always observed at the later 
stages of evolution. There may be other instability mechanisms than the Kelvin- 
Helmholtz one such as a generation mechanism of vortex tubes in a rotating flow 
(Hopfinger, Browand & Gagne 1982; Rogers & Moin 1987). These lateral vortex tubes 
are distorted by the random velocity field into longitudinal vortex tubes and 
complicated hairpin vortices which break down back into the random vorticity field 
(see Sandham & Kleiser 1992). 
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FIGURE 20. Formation and breakdown of the vortical structure in a uniform shear flow. The linear 
mean shear flow stretches a random vorticity field to generate longitudinal vortex tubes. Longitudinal 
vortex tubes induce swirling motion around them which stretches vorticity lines most effectively in the 
negative spanwise direction to generate vortex layers. Vortex layers roll up, through Kelvin- 
Helmholtz instability, into lateral vortex tubes. There are strong mutual interactions among 
longitudinal vortex tubes, lateral vortex tubes, vortex layers, and the linear mean shear. All of these 
typical structures break down into a disordered weak vorticity field through various instability 
mechanisms. 

5. Concluding remarks 
We have investigated the mechanism of generation and development of vortical 

structures in a homogeneous shear flow by analysing the results of direct numerical 
simulations of the Navier-Stokes equation. It was found that a few types of vortical 
structures dominate in a complicated fluctuating vorticity field. They are longitudinal 
vortex tubes, which are orthogonal to the spanwise direction and inclined at 15"-30" to 
the downstream, and lateral vortex tubes and vortex layers with spanwise vorticity. 

We have observed the following scenario of generation, development and breakdown 
of vortical structures (figure 20). 

(i) The linear mean shear flow stretches a randomly distributed initial vorticity field 
to generate many elongated vortex tubes, which we call longitudinal vortex tubes. The 
longitudinal vortex tubes are born perpendicularly to the spanwise direction and 
inclined at 45" and 225" to the downstream, which are the directions of maximal 
extension of the mean shear flow. The mutual distance between the longitudinal vortex 
tubes is determined by the lengthscale of the initial fluctuating vorticity. There seem to 
be no direct relations between the mutual distance and the mean shear rate, unlike the 
streak structure observed in turbulent boundary layers. 

(ii) These longitudinal vortex tubes are subsequently inclined more and more 
toward the streamwise direction with further increase in their vorticity. Vorticity 
vectors inside longitudinal vortex tubes are less inclined (by about 10') than the tubes 
themselves. That is, there is a substantial deviation in direction between the vortex 
tubes and vorticity vectors therein. Strong longitudinal vortex tubes induce strong 
swirling motion around them which stretches fluid elements in a somewhat random 
way. Because there is relatively high vorticity of the mean shear in the negative 
spanwise direction, stretching of fluid elements in the spanwise direction is more 
effective in increasing the spanwise component of vorticity. Then, vortex layers with a 
spanwise component of vorticity are generated along planes nearly parallel both to the 
longitudinal vortex tubes and to the spanwise axis. 
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(iii) These vortex layers roll up, through the Kelvin-Helmholtz instability, into 
vortex tubes in the spanwise direction, which is called the lateral vortex tubes. These 
lateral vortex tubes are stretched and distorted by the mean shear to make hairpin 
vortex tubes. There are also complicated three-dimensional interactions between 
vortex layers and longitudinal vortex tubes ; the former are either wrapped or entrained 
into the latter. Moreover, there should be some interactions between longitudinal and 
lateral vortex tubes, though we have not identified any of them clearly yet. 

(iv) All of these typical structures break down into a disordered weak VorticityJield 
through various instability mechanisms and complicated mutual interactions. 

(v) Owing to continuous distortion due to the linear mean shear, an oblique stripe 
structure, which inclines at 10°-15" to the downstream, prevails in the whole flow field. 
This leads to a suppression of fluctuations of velocity and vorticity in the vertical 
direction (see figure 3 in Kida & Tanaka 1992). 

(vi) Since there is no characteristic length in homogeneous shear turbulence, the 
characteristic amplitude and length of the fluctuating flow field increase without limit. 
The turbulent energy, enstrophy, and Reynolds stress increase exponentially 
(Tavoularis 1985; Tavoularis & Karnik 1989; Kida & Tanaka 1992). But the flow 
structure develops statistically similarly, as do the dynamical processes among various 
vortical structures. 

It is important to clarify how these vortical structures take part in turbulence 
dynamics, such as turbulent diffusion, mixing and transport of heat, mass, momentum 
and kinetic energy of fluid elements and contamination, production of turbulent 
energy, and so on. The study of such dynamical roles of vortical structures is currently 
under way and the results will be reported in a separate paper. 

This work was partially supported by a Grant-in-Aid for Scientific Research from 
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